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Abstract - Lead (Pb) shows a considerable amount of heavy metal toxicity in the central nervous system. Neuronal death or 

neurodegeneration is related to the Pb induced inflammatory processes through microglial activation in brain. Pb induced 

activation of microglia leads to the expressions of different cytokines, chemokines and enzymes, such as TNF-α, IL-6, MCP-1, 

Cox-2, caspases, nitric oxide synthetase (NOS 2) etc. leading to trigger different signaling cascades, namely, Extracellular-

signal-regulated kinases (ERK1/2), NF-B Pathway, c-jun N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs), 

p38 MAPK, Akt Pathway in neuroinflammation. Thus, the first line of defense mechanism homeostasis is disturbed by the Pb 

induced activation of microglia leading to neuronal death. 
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1. INTRODUCTION 
 

 Lead (Pb) is a toxic environmental agent that has debilitating effects on human health. It is considered 

as the 2
nd

most toxic substance according to ATSDR that is being used extensively due to its efficient 

properties of corrosion resistance and high malleability. Over the years it has been observed that several 

natural and anthropogenic activities have been the reason for lead contamination in the environment. Lead can 

come in the atmosphere by efflux from mining lead and other metals, and from industrial units that make or 

use lead, lead alloys, or lead compounds. Lead in the soil is mainly due to the weathering of lead based paints 

from the heavy structures like bridges and buildings that stick firmly to the soil particle and settles in the 

upper layer of the soil. Lead used in gasoline and unleaded petrol and released by the automobiles contributes 

to lead in air. These soil particles when enters the water bodies do contaminate them too. They may also 

contaminate the water by getting released from the leaded pipes when the water becomes acidic. Surface 

water lead contamination is also due to lead containing dust from the environment and industrial effluents of 

iron and steel industries along with urban run-off. 

 

 Global lead toxicity – resulting from human activities is responsible to the great increased circulation 

of lead in soil, water and air – remains significant. Despite a century of cumulative evidence about its threat to 

the health of children, lead remains to be added to paints, pigments, toys, traditional medications and other 
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consumer products, especially as manufacturing shifts to low-income countries that lack environmental and 

product content controls and policies. 

 

 Lead toxicity has been under the radar of the environmentalist since the 1960s. Biologists have been 

concerned about the negative impact on health due to lead poisoning. It has been recognized as the major 

pollutants of environment. Central nervous system (CNS) of late has been identified to be affected due to lead 

poisoning [1].As mentioned earlier lead toxicity in the nervous system by CNS impairment in children leads 

to cognitive deficits[2-4]. Chronic exposure of this heavy metal is debilitating to the functional behavior of an 

organism[2-4]. Studies have repeatedly shown that acute exposure to Pb can lead to glial activation and 

secretion of cyto-chemokines in both in vitroand in vivomodels[5-8]. 

 

 Acute lead poisoning affects various organs in our body including CNS[9-12], gastrointestinal (GI) 

tract[13], blood and kidneys[14-16]. Manifestation of lead poisoning in CNS has been marked through pain, 

muscle weakness, numbness and tingling, and, rarely, symptoms associated with inflammation of the 

brain[17]. Other acute symptoms are nausea, vomiting, diarrhea,abdominal pain and constipation[18]. People 

who survive acute poisoning often go on to develop symptoms of chronic poisoning[18].Inorganic lead has 

been speculated to damage the PNS (peripheral nervous system) by causing peripheral motor neuropathy with 

paralysis (“wrist drop” and “ankle drop”)[19, 20].  

 

 Chronic cases of lead poisoning generally associated with multiple tissues or organs but an in depth 

research in the field tells us that there are these three main types oforgan systems that are affected most: 

gastrointestinal, neuromuscular, and CNS[17]. CNSand neuromuscular diseases due to lead toxicity usually 

result from intense exposure, showing gastrointestinal symptoms mainly[18]. Chronic exposure of lead in 

CNS showsshort-term memory andattention, depression, abdominal pain, nausea, loss of synchronization, and 

numbness and itchiness in the extremities[21]. In chronic lead poisoning these problems like fatigue, 

headaches, stupor, problems with sleep, garbled speech, and anemia can be found[17].Hyperkinesia or 

aggressive behavior disorders has been typically observed in children suffering from an enhanced lead 

concentration with the tissue[17]. Visual disorder may exists with progressivelydevelopingblurry vision 

because of central scotoma, initiated by toxic optic neuritis[22-27]. 

 

 It also accounts for most of the cases of pediatric heavy metal poisoning as it is shown to interfere 

with the development of the nervous system resulting in permanent learningand behavioral disorders[28, 

29].Lead poisoning affects the PNS (especially motor nerves) and the CNS[19, 20].PNS effects are observed 

more prominently in adults and CNS among children[30]. This difference may be attributed to the 

development of the Blood-Brain-Barrier (BBB) or the immune system of the body[31-33]. Lead causes the 

axons of nerve cells to degenerate and lose their myelin coats[34-39].Lead exposure in has been observed to 

cause learning disabilities[3, 40-44], and children with more than 10μg/dL concentration of lead in their blood 

has been reported to suffer from developmental disabilities[45-47].The increase in concentration of lead in 

blood has an inverse correlation with intelligence, nonverbal reasoning, memory, attention, reading and 

arithmetic ability, fine motor skills, emotional regulation, and social engagement[48].Unfortunately for lead 

toxicity no threshold has been determined to interpret the level of cognitive abilities in children. As for 

example it has been reported that children suffer from reduced academic performance with low blood lead 

levels even below and blood lead concentration of 5 μg/dL[48-50].Although adults were not reported to 

develop CNS problems due to lead poisoning some cases are there that tells about high blood lead levels in 

adults are also associated with the increase in lead concentration in blood. A decrease in cognitive 

performance and psychiatric symptoms such as depression and anxiety has been associated with increase in 

blood lead poisoning[51].In Korea,it was found in a large group of inorganic lead workers had lead levels in 

blood(20–50 μg/dL) were associated with cognitive defects[52].Increase in blood lead levels from about 50 -

100 μg/dL in adults have been diagnosed to be associated with persistent, and possibly permanent, 

impairment of CNS function[53, 54].In the PNS, the motor axons are the primary target of lead toxicity. Lead-

induced pathological changes in these fibers consist of segmental demyelination and axonal degeneration. 
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Extensor muscle palsy with wrist and ankle drop has been identified since the time of Hippocrates as the 

conventional clinical sign of the peripheral neurological toxicity of lead; however, this basically occurs with 

chronic lead poisoning and is uncommon in acute exposure to lead. In the CNS, lead causes asymptomatic 

malfunction of neuro-behavioral function in children at doses not sufficient to produce clinical 

encephalopathy. 

 

 Pre-natal exposure to lead and direct interaction to lead in human milk from conception onward, lead 

that has been preserved in the mother’s skeleton in years past is eluted into the circulation under the metabolic 

stress of pregnancy. Throughout pregnancy, lead readily passes from the maternal to the infant circulation, 

and the blood lead concentration of the infant appears virtually same to that of the mother[55]. Once in the 

infant, Pb can get into the immature BBB to enter the developing brain[56]. The maturing human brain is 

particularly vulnerable to lead, even at very low levels of exposure. The source of lead in an infant’s blood 

may be a mixture of about 2/3
rd

of dietary and 1/3
rd

of skeletal lead, as shown by studies that exploited the 

dissimilarities in lead isotopes stored in the bones of women migrating from Europe to Australia[57]. 

Although lead is found in human milk, the concentration is near to that of plasma lead and much less than that 

found in whole blood, so little is transferred to the infant. Because infant formulas and other foods for infants 

also consists of lead (as may the water used to prepare these foods), women with generally encountered blood 

lead concentrations who breast-feed their infants expose them to lesser lead than if they do not breast-feed. In 

Mexico, providing women supplemental Ca during lactation resulted in a (less than 2 µg/dl) decrease in the 

mother’s blood lead concentration, perhaps by decreasing skeletal resorption[58]. In theory, this could further 

decrease the transfer of lead through breast milk. Mechanisms of lead neurotoxicity is one of the mechanisms 

underlying the neurotoxicity of lead motivates in its ability to substitute for other polyvalent cations (mostly 

divalent cations, such as calcium (Ca2+) and zinc (Zn2+)) in the molecular mechanism of living 

organisms[59]. In various instances, the characteristics of lead approve it to bind with greater affinity than Ca 

and Zn ions to protein binding sites. These interactions allow Pb to affect various biologically important 

processes that includes metal transport, energy reactions, apoptosis, ionic conductivity, cell attachment, 

intercellular and intracellular signaling, diverse enzymatic processes, protein development, and genetic 

control. Membrane ionic channels and signaling molecules predicted to be one of the most relevant molecular 

targets that leads to lead’s neurotoxicity; the developing CNS is particularly susceptible[55]. Irreversibility of 

Pb neurotoxicity the neuro-behavioral changes associated with early exposure to lead appear to be continued 

and irreversible[60-64]. These alterations are not reversed or ameliorated by chelation therapy[65]. There is 

an inverse correlation between early childhood exposure to Pb and performance on cognition and behavior 10, 

15 and 20 years after the blood lead burdens were measured[66]. Early exposures have also been related to 

increased rates of hyper-activity, inattentiveness, failure to pass from high school, bad behavior, juvenile de-

linquency, drug abuse and incarceration[60-62, 67-70]. In addition to that it has been observed in the US that 

the murder rate decreased sharply after the removal of Pb from gasoline in a 20-year lag[71], a finding related 

with the idea that exposure to lead in early life is a strong determinant of behavior decades later in adult life. 

Animal studies provide experimental proofs that support the connection between lead and aggression [72]. 

Thus, it is now quite clear that there are adverse neuro-developmental effects at the lowest blood lead 

concentrations yet to be studied. On the basis of this proof it is possible today to confirm that low 

concentrations of Pb are harmful to brain development and cognitive function. A threshold for harmful effects 

of Pb at the population level, however, has not been recognized[49, 73, 74]. 

 

 

II. EFFECTS OF LEAD ON IMMUNE SYSTEM 
 

 The immune system are also highly affected by comparatively low levels of exposure to lead – which 

is, lower than 10 µg/dl[75-77]. Prenatal exposure to lead and susceptibility of lead in human milk from 

conception onward, lead that has been accumulated in the mother’s skeleton in years past is released into the 

blood stream under the metabolic stress of pregnancy. Throughout pregnancy, lead readily across the placenta 

and the blood lead concentration of the infant becomes identical to that of the mother [55]. Once in infant, 
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lead can spearhead through the immature BBB to enter the developing brain [56]. The human brain in 

developing stage is susceptible to very low level of lead exposure. 

 

 In addition to this, lead exposure has also been shown to be related with neurodegenerative disorders 

which have been reported to be caused due to plethora of intracellular targets, thereby contributing in many 

pathogenic processes, which may be characteristic of such disorders such as mitochondrial dysfunction, 

oxidative stress, along with brain inflammation. It has been shown that exposure to lead in early phase of 

development of the brain can precondition for developing neurodegenerative conditions later in life and heavy 

metals can exert adverse effects through acute neurotoxicity or through slow accumulation during prolonged 

periods [78]. 

 

 Brain is one of the major target organs of this heavy metal poisoning where severe neurological 

complications may arise after exposure. Lead has been reported to damage the nervous system 

microvasculature extensively [79]. In their study, Garcia-arenas et al. have theorized that lead exposure 

increases the production of inducible nitric oxide synthase (iNOS) in capillaries of the CNS [79]. However 

the findings of this study was in debated by the recent observations that suggested that inflammation may play 

a vital role in lead mediated toxicity [80]. Numerous studies on Pb neurotoxicity have indicated this metal to 

be a dangerous toxin, particularly during the developmental stages of higher organisms [81].  

 

 This phenomenon is accompanied by degeneration of neuronal cells and may be connected with 

inflammatory events owing to the production of a wide range of cytokines and chemokines [82]. Prolonged 

exposure to lead has also been examined in animal models including rats in a prenatal stage of their life cycle. 

In order to investigate its potential pro-inflammatory effects, morphology of microglia has been studied after 

exposure to high concentration of lead. Pb exposure leads to significant glial activation, and is marked by 

increased levels of glial fibrillary acidic protein (GFAP) and S-100 proteins in all parts of the brain [82]. 

These modifications are related to elevation of pro-inflammatory cytokines {interleukin-1 (IL-1), interleukin-

6 (IL-6) and tumor necrosis factor-α (TNF-α)}in hippocampus and forebrain mostly. The results specify 

chronic glial activation is noticeable by inflammatory and neurodegenerative features as a new mechanism of 

Pb neurotoxicity in postnatal rat brains [7]. 

 

 Before the acknowledgement of brain macrophages (microglia), the innate mechanisms driving the 

pathogen clearance were not well understood. It is now well accepted that activation of microglia is crucial 

for the clearance of pathogens within the CNS [83, 84]. However, an exaggerated and sustained response may 

prove to be detrimental for the health of neurons and therefore, acute as well as chronic activation of 

microglia is often associated with neuro-inflammatory and neurodegenerative conditions of the brain. Once 

activated, they may either release pro-inflammatory or anti-inflammatory cytokines, and a balance between 

the two decides whether it results in active inflammation. Pro-inflammatory mediators often result in a 

compromise of the integrity of the BBB allowing the peripheral leukocytes and macrophages to gain entry 

into the CNS. It has already been proven that lead can result in activation of microglia and production of 

proinflammatory cytokinesincluding IL-1β and TNF-αboth in vivo and in vitro [85]. These cytokines play an 

important role in neurodegeneration when microglia remains in a state of sustained activation. 

 

 

III. NEUROINFLAMMATION AND IMMUNE RESPONSE 

 

 The central nervous system varies from the other body systems and its response to pathogenic en-

counters is a little changed. In compare to the remarkable view that the central nervous system (CNS) is an 

immune-privileged organ, deficient a lymphatic system and protected from the circulatory system by the 

blood-brain barrier current studies and evidences have led to noteworthy of this idea. The CNS has been 

found to have its own private system of fighting through inflammatory response and an adapted system of 

immune-surveillance with coordination with the systemic immune system is also evident [86, 87]. However, 



UGC JOURNAL NUMBER 44557 

 
 

IJAPRR International Peer Reviewed Refereed Journal, Vol. IV, Issue X, p.n. 18-40, Oct, 2017 Page 22 
 

the inflammatory reaction of the other tissues and the brain are different. This is most evident in leukocyte 

recruitment, which is rapid in many systemic organs, but modest and delayed in the brain. Although delayed 

response in recruiting leukocytes in brain against rapid activation of brain’s own immune cells and release of 

inflammatory agents [88]. Inflammation in the brain is categorised by activation of glial cells (mostly micro-

glia and astrocytes) and expression of key inflammatory mediators as well as neurotoxic free radicals. In 

CNS, microglia plays a key role in innate immune response as resident macrophages and astrocytes helps to 

maintain extra acellular ion balance and provide nutrients to the nervous system [89].The activation of those 

glial cells are giving key inflammatory response into the CNS. 

 

 

IV. MICROGLIA: The immune cells of the central nervous system (CNS) 

 

 Microglia are the resident immune cells of the CNS and constantly patrol the cerebral 

microenvironment to respond to pathogens and damage. Microglial cells are ubiquitous throughout the CNS 

and are well placed to sense changes in the health of neurons and glia. They are believed to be of mesodermal 

origin, derived from bone marrow precursor cells that enter the CNS early in fetal development, and thus 

represent a cell population separate and distinct from peripheral macrophages [90-92]. They are positioned 

immediately adjacent to neuronal cell bodies and are interspersed among the oligodendrocytes and astrocytes 

of the white matter. In their resting or ramified state, they have long, highly branched processes that extend 

into the parenchyma of the CNS. Microglia possesses numerous cytokine and chemokine receptors, which 

endow them with the capacity to respond to cytokines released after insults to the CNS [93, 94]. The function 

of normal, resting microglia is not known, however it is thought that they serve as a surveillance and 

monitoring role in the CNS. Microglia are the primary glial cells implicated in CNS inflammation. They are 

of the monocyte/macrophage lineage, which are resident in the brain and are activated in response to 

infection, inflammation and injury [95]. Microglial cells are ubiquitous throughout the CNS and are well 

placed to sense changes in the health of neurons and glia. They are positioned immediately adjacent to 

neuronal cell bodies and are interspersed among the oligodendrocytes and astrocytes of the white matter. In 

their resting or ramified state, they have long, highly branched processes that extend into the parenchyma of 

the CNS. Microglia possesses numerous cytokine and chemokine receptors, which endow them with the 

capacity to respond to cytokines released after insults to the CNS [93, 94]. The function of normal, resting 

microglia is not known, however it is thought that they serve as a surveillance and monitoring role in the 

CNS. 

 

V. ROLE OF MICROGLIA IN NEUROINFLAMMATION 

 

 Microglia are extremely sensitive to neuronal health and are often the first cell population in the CNS 

to respond to such changes. By acting as APCs and controlling the transition to the adaptive immune 

response, microglial cells are mediators of the innate response in the CNS [96-99]. Therefore, microglial 

activation is a hallmark of almost all brain pathologies, including although not limited to trauma, stroke and 

different viral and parasitic meningitis [100, 101]. Microglia are activated rapidly in response to such insults, 

and take on the morphology of activated macrophages. They are important phagocytic cells and release 

numerous inflammatory molecules, particularly cytokines [102, 103].  After stimulus microglial activation 

follows a stereotypic pattern of cellular response. Ramified, quiescent microglia, in response to an activation 

stimulus, proliferate and migrate to the site of injury or inflammation [104-107]. Once there they undergo 

additional immune-phenotypical and functional changes. They increase or express, de novo, a number of 

immune related proteins such as complement factors, cytokines (IL-1, IL-6, TNF-α, IL-18) [93, 100-102], 

chemokines (MCP-1, MIP-1α, MIP-1β, RANTES) [93, 108-110], major histocompatibility molecules (MHC) 

[111] vascular endothelial growth factor (VEGF) [112-114], lymph toxin, matrix metalloproteinases (MMPs) 

[115, 116]. VEGF, NO, and MMPs can weaken the BBB, thus enhancing the infiltration of leukocytes into the 

CNS. Functionally they release a repertoire of inflammatory mediators (like iNOS and Cox-2), prostaglandins 

http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
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[115, 117] and reactive oxygen species (ROS) [118, 119].  

 

 Microglial activation may also be viewed as an adaptive response, whereby microglia release neuro-

protective factors to facilitate the recovery of injured neurons and they phagocytose dying neurons, before 

they lyse and release toxic agents into surrounding areas. Experimental data concerning the role of inflamma-

tory processes, including microglial activation, in CNS damage have shown that neuroinflammatory process 

can support neuronal survival through multiple mechanisms [120-123]. The temporal profile of neurotrophic 

factor induction that follows the endogenous production of pro-inflammatory cytokines after injury points to a 

potential role of the inflammatory response in mediating neurotrophic responses. TNF-α and IL-1 are two of 

the main cytokines that are detected within parenchymal microglia along the lesion site [124], and a role for 

IL-1β in the induction of nerve growth factor expression by astrocytes has been reported [125, 126]. Micro-

glial-derived IL-1 is also required for the astrocytic production of ciliary neurotrophic factor (CNTF) [124] 

and insulin-like growth factor 1 (IGF1) [127], both of which promote repair of the injured CNS. Remyelina-

tion is impaired in mice that lack IL-1β, and there is also a profound delay in the differentiation of oligoden-

drocyte progenitors [127]. The activation of microglia and astrocytes, which is indicative of inflammation, 

occurs in the CNS of patients with Alzheimer's, Parkinson's and Huntington's diseases, multiple sclerosis and 

ALS [98, 128, 129]. The serum and cerebrospinal fluid of these patients show elevated levels of molecules of 

the innate immune system, such as IL-6, IL-1 and TNF-α[98, 128, 129]. IL-1 and TNF-α are secreted by 

activated parenchymal microglia and can be potent inducers of cell death in models of neurodegeneration, 

which can be alleviated by anti-inflammatory drugs and neutralizing antibodies [128, 130-133]. 

 

 

VI. MECHANISMS OF LEAD NEUROTOXICITY 

 

 One of the mechanisms influencing the neurotoxicity of lead lies in its ability to substitute for other 

polyvalent cations (particularly divalent cations, as for example calcium (Ca2+) and zinc (Zn2+)) in the 

molecular machinery of living organisms [59]. Conventionally the characteristics of lead facilitates it to bind 

with greater affinity than calcium and zinc ions to protein binding domains affectingmetal transport, energy 

metabolism, apoptosis, ionic conduction, cell adhesion, different enzymatic processes, intercellular and 

intracellular signaling, protein maturation, and genetic modulation. Membrane ion channels and signaling 

molecules have been observed to be one of the most potent molecular targets that contribute to lead’s 

neurotoxicity; the developing CNS is particularly vulnerable [55]. 

An overview of some of the key pro-inflammatory mediators relevant to our study and their effects on CNS 

are listed below. 

 

6.1 Tumor Necrosis Factor (TNF)-α: 

 

 The 17kDaproinflammatory tumor necrosis factor-α binds to its receptor constitutively expressed in 

both neuron and glia [134]. TNF-α per se can be synthesized and released in the brain by astrocytes, 

microglial, and some neurons [130, 135-137]. Under various pathological conditions, such as trauma, 

ischemia, and inflammatory diseases (HAD, MS, AD), the expression and release of TNF-αare rapidly 

increased in the CSF and plasma [133, 138-140]. CNS damage can also increase TNF-active transport into 

the brain [141]. TNF-is known to increase oxidative stress in the CNS through ROS generation[142]. TNF-α 

also induces caspase-3 activation that causes apoptotic neuronal cell death in hippocampal cultures [143]. 

Inflammatory factors found in brain trauma [144]such as TNF-αreleased by glia causingneuron degeneration 

in vitro[145, 146] and in vivo[147, 148].Previous results indicated that PKC-MEK-p42/44 MAPK is a 

common signaling pathway for lead induced TNF-αexpression in glial cells[148]. Maternal exposure to lead 

affects hippocampal long-term potentiation (LTP) leading to learning and memory deficits in mice offspring 

[85]. It also affects the expressions of multiple SNARE proteins (SNAP-25, VAMP-2, and Syntaxin 1A) in 

the hippocampus [149]. Pb can secrete cyto-chemokines, resulting in subsequent neuroblastoma death via BV-

2 mouse microglial activation. Action of lead culminates into up-regulation of extracellular signal-regulated 

http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
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kinase (ERK) and protein kinase B (Akt) pathways, along with activation of an important transcription factor, 

nuclear factor-κB (NF-B) leading to increased level of TNF-α[5]. 

 

6.2 Interleukin-6 (IL-6): 

  

 IL-6 is a typical pleiotropic cytokine [150, 151], originally identified as a factor in the induction of 

immunoglobulin production in B lymphocytes. IL-6 is a glycoprotein cytokine that mediates signal 

transduction between immune cells, induces acute-phase protein synthesis, and controls growth and 

differentiation of cells of the immune and hematopoietic systems. In the nervous system, IL-6 likely is a 

trophic factor that, under some circumstances, supports neuronal and glial differentiation and survival [152]. 

In addition to these potentially beneficial effects of IL-6, there has been a growing appreciation of the 

destructive potential of elevated levels of IL-6 in the CNS [152]. IL-6 levels in the adult CNS are usually low 

or undetectable under baseline conditions, but increase dramatically in response to injury, inflammation, and 

CNS diseases like EAE. IL-6 produces its effects by binding to IL-6 receptors (IL-6Rs), which form 

complexes with gp130. Once formed, the IL-6/IL-6R/gp130 complex stimulates the 2 main signal 

transduction cascades (JAK/STAT and Ras/MEK/MAPK) that lead to activation of a number of transcription 

factors responsible for IL-6–mediated effects [153]. IL-6 is also involved in several neurological and 

neuropathological disorders. For example, IL-6 levels are elevated in the CNS during AD, multiple sclerosis, 

as well as during viral and bacterial meningitis [154, 155]. IL-6 is also known to enhance BBB permeability 

and inflammatory cell migration into the brain [156]. It has been also found that Pb exposure in C57BL/6J 

mice caused dose dependent reductions in interleukin 6 [157, 158]. 

 

6.3 MCP-1: 

 

 Chemokines are small, inducible, secreted, proinflammatory cytokines acting primarily as 

chemoattractants and activators of granulocytes, macrophages and other inflammatory cells [159, 160]. The 

accumulation of inflammatory cells, mediated by chemokines in the immediate microenvironment, is an early 

event in response to wounding and injury in peripheral organs [161-163] as well as the brain [164-166]. In 

vitro and in vivo data support the hypothesis that gradients of locally generated chemotactic factors are 

responsible for the recruitment of inflammatory cells into the CNS parenchyma leaking the BBB [167-169]. 

Each chemokine has cellular specificity and potency for the attraction of particular cells [160]. MCP-1 is one 

such chemokines, which is known to regulate BBB permeability [170] may be by altering the expression of 

tight junction associated proteins in brain microvascular endothelial cells [171]. MCP-1 was originally 

identified as a growth factor-inducible early-response gene in murine fibroblasts. More recent studies have 

shown that mature secreted MCP-1, a 76 amino-acid protein, has cytokine-like properties [172]. MCP-1 

exerts its effects through its receptor, C-C chemokine receptor type 2 (CCR2), which can have both pro- and 

anti-inflammatory actions [173]. Pro-inflammatory cytokines, TNF-αand IL-1β also stimulate the production 

of MCP-1 from astrocytes and microglia. In addition, MCP-1 can also be stimulated by IL-6 and colony 

stimulating factor-1 (CSF-1). Several reports have shown that MCP-1 plays a role in the CNS diseases 

including human gliomas [174, 175], experimental autoimmune encephalomyelitis (EAE) [176] and may also 

play a crucial role in neuropathic pain as shown by studies in CCR2-knockout mice, which could be attributed 

to reduced macrophage infiltration in these mice [177]. The cellular source of MCP-1 in brain, however, 

remains controversial. Both macrophages and astrocytes have been suggested as a possible source of MCP-1 

both in vivo and in vitro [176, 178-180]. Pb leads to secretion of cyto-chemokines, resulting in subsequent 

neuroblastoma death via BV-2 mouse microglial activation.Action of lead is also characterized by up-

regulation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways, along with 

activation of an important transcription factor, nuclear factor-κB (NF-B) leading to increased level monocyte 

chemoattractant protein-1 (MCP-1)[5].  

 

 

 

http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
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6.4 Cox-2: 

 

 Also known as prostaglandin H synthase, Cox-2 catalyzes the rate-limiting step in the inducible 

production of prostaglandins like prostaglandin E(2) (PGE2) from arachidonic acid [181], which is then 

converted to active prostanoids by synthases [182]. Cox-2 is expressed in different brain cells, especially 

microglia and is responsible for the production of high levels of prostanoids during acute or chronic 

neuroinflammation [183]. A variety of stimuli, including growth factors, cytokines, bacterial endotoxins and 

phorbol esters can elicit Cox-2 expression [184]. PGE2 has the capability to down-regulate important glial 

functions including cytokine secretion by astrocytes and microglia. For example, in a study it was shown that 

PGE2 inhibited the up-regulation of IL-12p75 in microglia stimulated with inflammatory agents including 

LPS [185]. Pb induces secretion of cyto-chemokines, resulting in subsequent neuroblastoma death via BV-2 

mouse microglial activation and up-regulation of Cox-2[5].Lead sets up a cascade to bring in COX-2 

expression in glial cells.Study has confirmedthat for COX-2 induction in neurons and glia, lead toxicity 

played a key role [186]. 

 

 

VII. TRANSCRIPTIONAL REGULATION OF MICROGLIAL ACTIVATION 

 

 Secretion of cytokines is an active process and transcription factors play a crucial role in the 

activation of microglia. Owing to our knowledge of important regulators and key targets of inflammatory 

mechanisms in the CNS and immune responses to neurological diseases, it is clear that a complex nature of 

transcription biology operates at the heart of inflammation [187].Of the several pro-inflammatory 

transcription factors that are known to be involved in different aspects of inflammation [188], NF-B is 

considered as one of the key transcription factors which culminates into inflammatory pathway activation via 

microglial activation [189].Any of the microglia mediated pro-inflammatory stimuli can activate NF-B 

expression [190], which can further induce specific genes that regulate the expression of inflammation and 

acute phase genes leading to the continued elevation of inflammatory proteins. 

 

7.1 NF-B Pathway in neuro-inflammation: 

 

 NF-B is a family of dimeric transcription factors involved in immune [191]and inflammatory 

responses [188, 192], cellular growth, differentiation, and apoptosis [193, 194]. They have also been 

implicated in cellular transformation and tumorigenesis [195]. Activation of NF-B can occur through various 

stimuli, including cytokine stimulation, bacterial and viral infection, and oncogenic signals [194]. Although 

nuclear accumulation is an important step in NF-B activation, post-translational modifications on p65 are 

proposed to be necessary for the transcriptional competence of nuclear NF-κB. For example, phosphorylation 

of p65 on serine 276 is required for stable interactions with the transcriptional co-activator CBP and to 

stimulate transcriptional activation of NF-B target genes [196, 197].Other sites of phosphorylation have also 

been described that may contribute to the inherent transcriptional activity of NF-B [198-200]. Evidence has 

also been presented that Akt, which functions downstream of PI3-kinase, can control the transcriptional 

activation function of the p65 NF-κB subunit through a mechanism dependent on IKK function but in a 

manner which does promote enhanced DNA binding potential [201, 202]. Pb enhances secretion of cyto-

chemokines, culminating into subsequent neuroblastoma death via BV-2 mouse microglial activation. Up-

regulation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways, along with 

activation of an important transcription factor NF-κB is also associated with action of lead upon CNS[5]. 
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VIII. SIGNALING PATHWAYS INVOLVED IN MICROGLIAL ACTIVATION 
 

 Kinase and phosphate cascades induce microglial response to extracellular stimuli. p38 mitogen-

activated protein kinases are a class of mitogen-activated protein kinases(MAPK) and are reported to respond 

to stress stimuli and have been demonstrated to play a significant role in activation of microglial cells which 

in turn leads to release of neurotoxic molecules and neuroinflammation [203, 204]. In vivo experiments also 

imply that p38 and p44/42 MAPKs play an important role in microglial activation in acute brain injury states 

such as stroke and in chronic neurodegenerative diseases such as Alzheimer’s disease. A MAPK pathway 

generally consists of the following 4 sub-pathways: 

8.1 Extracellular-signal-regulated kinases (ERK1/2): 

 

 Extracellular-signal-regulated kinases (ERK1/2 also known as p44/42 MAPK); Extracellular signal–

regulated kinases(ERKs) or classical MAP kinases are widely expressed kinasemolecules that play vital roles 

in  the regulation of meiosis, mitosis, and post mitoticfunctions in differentiated cells and many other 

signalling cascades. Many different stimuli including cytokines, virusinfection, growth, ligands for 

heterotrimeric G protein-coupled receptors, transforming agents and carcinogens result in the activation of 

ERK pathway therefore stimulating appropriate physiological response.Experimental evidence supports the 

fact that extracellular signal-regulated kinase 1/2 (ERK1/2) signaling plays a pivotal role in the embryonic 

development of the central nervous system (CNS) and in the maintenance of normal adult brain physiology 

[205].ERK1/2, one of the most well characterized members of the mitogen-activated protein kinase family 

which regulates plethora of processes ranging from metabolism, motility and inflammation, to cell death and 

survival [206-208]. In the nervous system, ERK1/2 regulates synaptic plasticity, [209, 210] brain 

development and repair [211-214] as well as memory formation [215, 216]. ERK1/2 is also reported to be a 

potent effector of neuronal death and neuroinflammation in many CNS diseases [206-208, 217-219]. Pb can 

secrete cyto-chemokines, resulting in subsequent neuroblastoma death via BV-2 mouse microglial activation 

and up-regulation of extracellular signal-regulated kinase (ERK) pathway[5]. 

8.2 c-jun N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs): 
 

 C-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-

Jun on Ser-63 and Ser-73 within its transcriptional activation domain.JNKs belong to themitogen-activated 

protein kinasefamily, and are responsive to stimuli, such ascytokines,UV irradiation, heat shock, 

andosmoticshock.T celldifferentiation [220, 221] and the cellularapoptosispathway are also reported to be 

modulated by JNK activity [222, 223]. Works support the fact that this signaling pathway contributes to 

inflammatory responses in mammals and insects [224, 225]. Inflammatory signals, perturbations in levels of 

reactive oxygen species, ultraviolet radiation, protein synthesis inhibitors, and a variety of stress stimuli may 

outcome in JNK stimulation.  

  

One way this activation may occur is through disruption or alteration of the conformation of sensitive protein 

phosphataseenzymes which normally are reported to inhibit the activity of JNK itself and the activity of 

proteins linked to JNK activation [226].Following their activation, JNKs are reported to interact with scaffold 

proteins like JNK interacting proteins as well as their upstream kinases JNKK1 and JNKK2. JNK1 is 

elaborate in apoptosis [222], neurodegeneration [227], cell differentiation [220, 221] and proliferation [228, 

229] inflammatory disorders and cytokine production [224, 225] mediated by AP-1 (activation protein 1) for 

example RANTES, IL-8 and GM-CSF [230].Recently reports have demonstrated JNK1 to modulate Jun 

protein turnover by phosphorylation followed by activation of the ubiquitin ligase Itch [231, 232].Studies 

showed that lead toxicity can be seen on adult neural stem cells and impair the normal processes in 

hippocampal neurogenesis which may be induced by activation of c-Jun NH2-terminal kinase (JNK) [233]. 

 

 

https://en.wikipedia.org/wiki/Protein_kinase
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8.3 p38 MAPK: 

 

 P38 mitogen-activated protein kinasesare a class of mitogen-activated protein kinases (MAPKs) also 

known as Cytokinin Specific Binding Protein (CSBP) [234], respond to different stress stimuli such as 

cytokines, ultraviolet irradiation, LPS treatment, heat shock or osmotic shock. These proteins also take part in 

cell differentiation, apoptosis and autophagy [234].Lead toxicity leads to activation of p38 mitogen activated 

protein (MAP) kinase signaling pathway which may play a crucial role in neural degeneration [233]. 

 

8.4 Akt Pathway: 

  

 For survival and growth PI3K-Akt Pathway is a key signal transduction pathway which respond to 

extracellular signals. In this regard, proteins involved are phosphatidylinositol 3-kinase(PI3K)and Protein 

Kinase B (Akt).Functional Akt intermediates downstream responses, including cell proliferation, survival, cell 

migration, cellgrowth, and angiogenesis, by phosphorylating various intracellular proteins. Akt pathway is 

existing in all cells of developed eukaryotes and it is extremely well-preserved [235].The pathway consists of 

multiple mechanisms including cross talk with various signalling attributes. Akt phosphorylates several 100 

diverse substrates, foremost to an extensive variety of effects on cells [236].Pb can secrete cyto-chemokines, 

resulting in subsequent neuroblastoma death via BV-2 mouse microglial activation and up-regulation of 

protein kinase B (Akt) [5]. 

 

 

IX. CONCLUSION 

 

 As relatively few studies are available particularly regarding the neurotoxicity by the activation of 

microglia due to exposure of lead, this topic is now of great concern as Pb toxicity is prevalent in natural 

resources. Though the process of inflammatory response due to lead toxicity in CNS is not fully demonstrated 

but it has some obvious key role in neurodegeneration. It is evident from studies related to expression of 

cytokines, chemokines and activities of enzymes consists of caspases, proteases, nitric oxide synthetase, 

cyclooxygenase-2 etc., which can immensely influence the cross-talk between the immune cells in the CNS 

(figure 1). Undoubtedly, the role of microglia in neurodegeneration due to heavy metal toxicity need further 

research to gain greater insights into the molecular and inflammatory processes as environmental pollution is 

now a relevant factor which is affecting the society on daily basis. 
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Figure: 1. Schematic diagram showing lead-induced microglial activation and neuronal 
death. 
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